Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.842
Filtrar
1.
Sci Total Environ ; 927: 172163, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569958

RESUMO

The early growth stage of plants is vital to community diversity and community regeneration. The Janzen-Connell hypothesis predicts that conspecific density dependence lowers the survival of conspecific seedlings by attracting specialist natural enemies, promoting the recruitment and performance of heterospecific neighbors. Recent work has underscored how this conspecific negative density dependence may be mediated by mutualists - such as how mycorrhizal fungi may mediate the accrual of host-specific pathogens beneath the crown of conspecific adult trees. Aboveground mutualist and enemy interactions exist as well, however, and may provide useful insight into density dependence that are as of yet unexplored. Using a long-term seedling demographic dataset in a subtropical forest plot in central China, we confirmed that conspecific neighborhoods had a significant negative effect on seedling survival in this subtropical forest. Furthermore, although we detected more leaf damage in species that were closely related to ants, we found that the presence of ants had significant positive effects on seedling survival. Beside this, we also found a negative effect of ant appearance on seedling growth which may reflect a trade-off between survival and growth. Overall, our findings suggested that ants and conspecific neighborhoods played important but inverse roles on seedling survival and growth. Our results suggest ants may mediate the influence of conspecific negative density dependence on seedling survival at community level.


Assuntos
Formigas , Florestas , Herbivoria , Plântula , China , Animais , Plântula/fisiologia , Formigas/fisiologia , Árvores/fisiologia , Densidade Demográfica , Simbiose
2.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664378

RESUMO

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Assuntos
Colo , Fibras na Dieta , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Mucosa Intestinal , Receptores de Superfície Celular , Animais , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Camundongos , Colo/metabolismo , Colo/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Feminino , Camundongos Endogâmicos C57BL , Muco/metabolismo , Transplante de Microbiota Fecal , Simbiose , Propionatos/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Adulto
3.
BMC Microbiol ; 24(1): 129, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643099

RESUMO

The α-Proteobacteria belonging to Bradyrhizobium genus are microorganisms of extreme slow growth. Despite their extended use as inoculants in soybean production, their physiology remains poorly characterized. In this work, we produced quantitative data on four different isolates: B. diazoefficens USDA110, B. diazoefficiens USDA122, B. japonicum E109 and B. japonicum USDA6 which are representative of specific genomic profiles. Notably, we found conserved physiological traits conserved in all the studied isolates: (i) the lag and initial exponential growth phases display cell aggregation; (ii) the increase in specific nutrient concentration such as yeast extract and gluconate hinders growth; (iii) cell size does not correlate with culture age; and (iv) cell cycle presents polar growth. Meanwhile, fitness, cell size and in vitro growth widely vary across isolates correlating to ribosomal RNA operon number. In summary, this study provides novel empirical data that enriches the comprehension of the Bradyrhizobium (slow) growth dynamics and cell cycle.


Assuntos
Bradyrhizobium , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Soja , Fenômenos Fisiológicos Celulares , Fenótipo , Simbiose
4.
PLoS Biol ; 22(4): e3002595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635919

RESUMO

How do distinct species cofunction in symbiosis, despite conflicting interests? A new collection of articles explores emerging themes as researchers exploit modern research tools and new models to unravel how symbiotic interactions function and evolve.


Assuntos
Coanoflagelados , Simbiose
5.
New Phytol ; 242(4): 1448-1475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581203

RESUMO

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.


Assuntos
Evolução Biológica , Modelos Biológicos , Micorrizas , Micorrizas/fisiologia , Micorrizas/genética , Ecologia , Simbiose/genética , Basidiomycota/fisiologia , Basidiomycota/genética
6.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38587812

RESUMO

Lentil is one of the most important legumes cultivated in various provinces of Iran. However, there is limited information about the symbiotic rhizobia of lentils in this country. In this study, molecular identification of lentil-nodulating rhizobia was performed based on 16S-23S rRNA intergenic spacer (IGS) and recA, atpD, glnII, and nodC gene sequencing. Using PCR-RFLP analysis of 16S-23S rRNA IGS, a total of 116 rhizobia isolates were classified into 20 groups, leaving seven strains unclustered. Phylogenetic analysis of representative isolates revealed that the rhizobia strains belonged to Rhizobium leguminosarum and Rhizobium laguerreae, and the distribution of the species is partially related to geographical location. Rhizobium leguminosarum was the dominant species in North Khorasan and Zanjan, while R. laguerreae prevailed in Ardabil and East Azerbaijan. The distribution of the species was also influenced by agroecological climates; R. leguminosarum thrived in cold semiarid climates, whereas R. laguerreae adapted to humid continental climates. Both species exhibited equal dominance in the Mediterranean climate, characterized by warm, dry summers and mild, wet winters, in Lorestan and Kohgiluyeh-Boyer Ahmad provinces.


Assuntos
DNA Bacteriano , Lens (Planta) , Filogenia , Rhizobium , Lens (Planta)/microbiologia , Irã (Geográfico) , Rhizobium/genética , Rhizobium/classificação , Rhizobium/isolamento & purificação , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Clima , DNA Espaçador Ribossômico/genética , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , RNA Ribossômico 23S/genética , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/classificação , Rhizobium leguminosarum/isolamento & purificação , Simbiose , Proteínas de Bactérias/genética , Reação em Cadeia da Polimerase
7.
Proc Natl Acad Sci U S A ; 121(16): e2319790121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593079

RESUMO

Bacteriophages (phages) play critical roles in modulating microbial ecology. Within the human microbiome, the factors influencing the long-term coexistence of phages and bacteria remain poorly investigated. Saccharibacteria (formerly TM7) are ubiquitous members of the human oral microbiome. These ultrasmall bacteria form episymbiotic relationships with their host bacteria and impact their physiology. Here, we showed that during surface-associated growth, a human oral Saccharibacteria isolate (named TM7x) protects its host bacterium, a Schaalia odontolytica strain (named XH001) against lytic phage LC001 predation. RNA-Sequencing analysis identified in XH001 a gene cluster with predicted functions involved in the biogenesis of cell wall polysaccharides (CWP), whose expression is significantly down-regulated when forming a symbiosis with TM7x. Through genetic work, we experimentally demonstrated the impact of the expression of this CWP gene cluster on bacterial-phage interaction by affecting phage binding. In vitro coevolution experiments further showed that the heterogeneous populations of TM7x-associated and TM7x-free XH001, which display differential susceptibility to LC001 predation, promote bacteria and phage coexistence. Our study highlights the tripartite interaction between the bacterium, episymbiont, and phage. More importantly, we present a mechanism, i.e., episymbiont-mediated modulation of gene expression in host bacteria, which impacts their susceptibility to phage predation and contributes to the formation of "source-sink" dynamics between phage and bacteria in biofilm, promoting their long-term coexistence within the human microbiome.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/fisiologia , Simbiose , Bactérias/genética
8.
Antonie Van Leeuwenhoek ; 117(1): 71, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668783

RESUMO

Insects are incredibly diverse, ubiquitous and have successfully flourished out of the dynamic and often unpredictable nature of evolutionary processes. The resident microbiome has accompanied the physical and biological adaptations that enable their continued survival and proliferation in a wide array of environments. The host insect and microbiome's bidirectional relationship exhibits their capability to influence each other's physiology, behavior and characteristics. Insects are reported to rely directly on the microbial community to break down complex food, adapt to nutrient-deficit environments, protect themselves from natural adversaries and control the expression of social behavior. High-throughput metagenomic approaches have enhanced the potential for determining the abundance, composition, diversity and functional activities of microbial fauna associated with insect hosts, enabling in-depth investigation into insect-microbe interactions. We undertook a review of some of the major advances in the field of metagenomics, focusing on insect-microbe interaction, diversity and composition of resident microbiota, the functional capability of endosymbionts and discussions on different symbiotic relationships. The review aims to be a valuable resource on insect gut symbiotic microbiota by providing a comprehensive understanding of how insect gut symbionts systematically perform a range of functions, viz., insecticide degradation, nutritional support and immune fitness. A thorough understanding of manipulating specific gut symbionts may aid in developing advanced insect-associated research to attain health and design strategies for pest management.


Assuntos
Microbioma Gastrointestinal , Insetos , Simbiose , Animais , Microbioma Gastrointestinal/fisiologia , Insetos/microbiologia , Nutrientes/metabolismo , Metagenômica , Interações entre Hospedeiro e Microrganismos , Inativação Metabólica , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo
9.
Curr Biol ; 34(8): 1705-1717.e6, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38574729

RESUMO

Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.


Assuntos
Quitina , Quitosana , Medicago truncatula , Micorrizas , Proteínas de Plantas , Simbiose , Micorrizas/fisiologia , Quitina/metabolismo , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/imunologia , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Imunidade Vegetal , Oligossacarídeos/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
10.
Science ; 384(6692): 217-222, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603509

RESUMO

Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."


Assuntos
Cianobactérias , Haptófitas , Mitocôndrias , Fixação de Nitrogênio , Nitrogênio , Cianobactérias/genética , Cianobactérias/metabolismo , Haptófitas/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Água do Mar/microbiologia , Simbiose , Mitocôndrias/metabolismo , Cloroplastos/metabolismo
11.
PLoS Biol ; 22(4): e3002561, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568895

RESUMO

Environmental bacteria influence many facets of choanoflagellate biology, yet surprisingly few examples of symbioses exist. We need to find out why, as choanoflagellates can help us to understand how symbiosis may have shaped the early evolution of animals.


Assuntos
Coanoflagelados , Animais , Coanoflagelados/genética , Simbiose , Bactérias
12.
PLoS Biol ; 22(4): e3002563, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573881

RESUMO

Exploring the mechanisms that underpin symbiosis requires an understanding of how these complex interactions are maintained in diverse model systems. The ciliate protist, Paramecium bursaria, offers a valuable insight into how emergent endosymbiotic interactions have evolved.


Assuntos
Chlorella , Cilióforos , Paramecium , Simbiose
13.
PLoS Biol ; 22(4): e3002571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578728

RESUMO

All animals and plants likely require interactions with microbes, often in strong, persistent symbiotic associations. While the recognition of this phenomenon has been slow in coming, it will impact most, if not all, subdisciplines of biology.


Assuntos
Plantas , Simbiose , Animais , Biologia
14.
PLoS Biol ; 22(4): e3002581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593123

RESUMO

Symbiosis is an old idea with a contentious history. New genomic technologies and research paradigms are fueling a shift in some of its central tenets; we need to be humble and open-minded about what the data are telling us.


Assuntos
Genômica , Simbiose , Simbiose/genética
15.
PLoS Biol ; 22(4): e3002583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598454

RESUMO

Endosymbiotic relationships are pervasive across diverse taxa of life, offering key avenues for eco-evolutionary dynamics. Although a variety of experimental and empirical frameworks have shed light on critical aspects of endosymbiosis, theoretical frameworks (mathematical models) are especially well-suited for certain tasks. Mathematical models can integrate multiple factors to determine the net outcome of endosymbiotic relationships, identify broad patterns that connect endosymbioses with other systems, simplify biological complexity, generate hypotheses for underlying mechanisms, evaluate different hypotheses, identify constraints that limit certain biological interactions, and open new lines of inquiry. This Essay highlights the utility of mathematical models in endosymbiosis research, particularly in generating relevant hypotheses. Despite their limitations, mathematical models can be used to address known unknowns and discover unknown unknowns.


Assuntos
Modelos Teóricos , Simbiose , Evolução Biológica
16.
PLoS Biol ; 22(4): e3002593, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603520

RESUMO

Understanding the evolution of coral endosymbiosis requires a predictive framework that integrates life-history theory and ecology with cell biology. The time has come to bridge disciplines and use a model systems approach to achieve this aim.


Assuntos
Antozoários , Animais , Antozoários/genética , Simbiose , Ecologia , Recifes de Corais , Evolução Biológica
17.
J Environ Sci Health B ; 59(5): 248-262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605578

RESUMO

The ability of Acinetobacter sp. strain HAP1, isolated from petroleum refinery effluent, to eliminate different concentrations (20, 40, 60, 80 and 100 mg/L) of Benzo[a]Pyrene degradation (BaP) was studied. A test to improve this degradation capacity was carried out by culturing the bacterial strain in association with a cyanobacteria. The results show a highly significant effect of the concentration of (BaP) and a very highly significant effect of the symbiosis between the bacterial strain and the cyanobacteria. This combination was able to significantly improve the (BaP) degradation rate by up to 18%. This degradation and especially in association leads to a complete mineralization of (BaP) and there is a difference in yield that can go up to 15%. Through molecular identification based on 16S rRNA gene sequence analysis, strains HAP1 and S66 were recognized as Acinetobacter sp. strain HAP1 and Cyanobacteriota sp. S66, respectively. Comparison of the retrieved sequences with the NCBI GenBank database was done, and the closest matches were found to be Acinetobacter pittii strain JD-10 for bacteria and Pseudochroococcus couteii strain PMC 885.14 for cyanobacteria.


Assuntos
Acinetobacter , Cianobactérias , Benzo(a)pireno , Simbiose , RNA Ribossômico 16S/genética , Biodegradação Ambiental , Acinetobacter/genética , Acinetobacter/metabolismo
18.
PLoS Biol ; 22(4): e3002580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607979

RESUMO

Endosymbiosis drives evolutionary innovation and underpins the function of diverse ecosystems. The mechanistic origins of symbioses, however, remain unclear, in part because early evolutionary events are obscured by subsequent evolution and genetic drift. This Essay highlights how experimental studies of facultative, host-switched, and synthetic symbioses are revealing the important role of fitness trade-offs between within-host and free-living niches during the early-stage evolution of new symbiotic associations. The mutational targets underpinning such trade-offs are commonly regulatory genes, such that single mutations have major phenotypic effects on multiple traits, thus enabling and reinforcing the transition to a symbiotic lifestyle.


Assuntos
Ecossistema , Simbiose , Simbiose/genética , Exercício Físico , Deriva Genética , Mutação/genética
19.
PLoS Biol ; 22(4): e3002587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607980

RESUMO

Rhizopus microsporus is an example of a fungal holobiont. Strains of this species can harbor bacterial and viral endosymbionts inherited by the next generation. These microbial allies increase pathogenicity and defense and control asexual and sexual reproduction.


Assuntos
Reprodução , Simbiose
20.
PLoS One ; 19(4): e0297547, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625963

RESUMO

Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A. evenia has emerged as a working model for investigating the NodF-independent symbiosis. Despite the availability of numerous resources and tools to study the molecular basis of this atypical symbiosis, the lack of a transformation system based on Agrobacterium tumefaciens significantly limits the range of functional approaches. In this report, we present the development of a stable genetic transformation procedure for A. evenia. We first assessed its regeneration capability and found that a combination of two growth regulators, NAA (= Naphthalene Acetic Acid) and BAP (= 6-BenzylAminoPurine) allows the induction of budding calli from epicotyls, hypocotyls and cotyledons with a high efficiency in media containing 0,5 µM NAA (up to 100% of calli with continuous stem proliferation). To optimize the generation of transgenic lines, we employed A. tumefaciens strain EHA105 harboring a binary vector carrying the hygromycin resistance gene and the mCherry fluorescent marker. Epicotyls and hypocotyls were used as the starting material for this process. We have found that one growth medium containing a combination of NAA (0,5 µM) and BAP (2,2 µM) was sufficient to induce callogenesis and A. tumefaciens strain EHA105 was sufficiently virulent to yield a high number of transformed calli. This simple and efficient method constitutes a valuable tool that will greatly facilitate the functional studies in NodF-independent symbiosis.


Assuntos
Fabaceae , Fabaceae/genética , Fabaceae/microbiologia , Agrobacterium tumefaciens/genética , Simbiose/genética , Fenótipo , Verduras/genética , Transformação Genética , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...